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SUMMARY 

An approximate theory of the scalar scattering by a strip in a dissipative medium is established. The theory is suitable 
when the relations 1/Im (k) ~ h ~ d are satisfied by the width of the strip (2h), the smallest distance between the plane of 
the strip and the exciting sources (d) and the wave number (k). The expressions valid in the far-field approximation are 
obtained by simple manipulations. Some illustrative examples concerning the scattering of electromagnetic waves, 
emitted by Hertzian dipoles, by unidirectionally conducting strips are given. 

I. Introduction 

Consider the following classical boundary-value problem related to the strip S defined by 
x = 0 ,  y e ( - ~ ,  o0), z e ( - h ,  h): 

A u + k 2 u = 0 ,  ( x , y , z ) ~ S  (1) 

s~ ~ ,  ay '  ~z u = 0(y, z), (x, y, z) e s ,  (2) 

where k 2 is a complex constant, 0 (Y, z) is a known function defined on S while u is to be found. 
The linear differential operator 5~ is a polynomial (with constant coefficients) with respect to 
the symbols appearing in the argument, such that 

Ox u - 0x2, u = #x O~ etc. 

In addition to Eqn. (2), one stipulates also that u satisfies the radiation condition at infinity 
and some edge condition at the edges of S. 

Although this problem has been subject to a great deal of investigations in case of plane 
incident waves [see, for example, 1-5], a general approximate theory valid for arbitrary incident 
waves is still lacking. The aim of this paper  is to establish such a theory when the relations 
1/Im (k) ~ h ~ d are fulfilled, where d stands for the smallest distance between the plane of the 
strip and the exciting sources. The method used in this approach is the classical Wiener-  
Hopf  technique. Although our main purpose is to present the essentials of the theory, deferring 
its detailed application to some specific problems to later publications, it seems appropriate to 
include some representative examples to illustrate the new possibilities opened by this theory. 

As is well known, the two-sided double Laplace transform technique, combined with the 
W i e n e ~ H o p f  procedure, reduces the abovementioned problem to a functional equation of the 
form (see 1, pp. 196-207 or Sect. 2, below) 

ehSeb (a, s )+e-h~b + (a, s)+ K(a, s)P(a, s)= - V ( a ,  s) (3a) 

or 
2 

( G(a, ~) qo+ (a, ~) d~+f(a,  s), ~2 1 (3b) ~o + (~, s) = ~ r + ~  = , 
aL 

where ~b +, q)+ and f are functions which are regular with respect to s in some right-half plane, 
B+ say, of the complex s-plane. Likely, 4~_ is a regular function of s in some left-half plane B_. 
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One supposes essentially that B+ and B_ have a non-empty common intersection B. P(~, s) is 
an unknown integral function of s while F,f,  G and K are given. Finally, the integration line 
L- is an arbitrary straight line in B, parallel to the imaginary axis, such that the point ( - s )  lies 
always in the left-hand side of U .  

With regard to the solution of the functional equation (3b) some approximate methods are 
known [1-5]. Recently, the present author has given an exact method which can be applied 
in the general case to find the exact solution, if any [6]. In the general theory that we are going 
to establish for a dissipative medium, the equation (3b) being already approximate, the afore- 
mentioned general exact method is not applicable. So we give a new method for obtaining an 
approximate solution to (3b), especially suitable when the relation 1/Im (k)~ h is satisfied. 

The essentials of the theory are given in Sect. 2, while Sect. 3 is devoted to some illustrative 
examples. Some relations concerning the far-field approximation and the edge condition are 
presented in Appendix 1 and Appendix 2. 

2. Approximate theory in a dissipative medium 

2.1. Hypotheses 

In order to get a satisfactorily approximate theory we assume that the following requirements 
are fulfilled: 

(i) The incident wave is monochromatic (the time factor e -i~~ is suppressed throughout). 
Because of the radiation condition satisfied at infinity, the asymptotic expression of u for 
r--+ oe contains a factor e ikr. 

(ii) The edge condition satisfied at the edges of S is of the form 

u (0, y, z) ~ a (y) (z 4- h) ~ for z-+ -T- h,  

where e is a real constant obeying the conditions 

2"~(iy, a, s) 
lim s2=+2_ ~ - 0 ,  y2~- s2 - -~ -o -2 - -} -k2 ,  (4) 
~ o o  

lira s a' s) - 0 0 ,  ( 5 )  
s ~ o o  s V - 2  

with v= + !  or v=0  in the case 2.2.1. or 2.2.2 below, respectively. 
(iii) The operator ~s  is even with respect to its third argument while it is even or odd with 

respect to the first: 

5(~ ~x '  t?y' u -= ~,r ' t?y' u 
(6) 

& ' a y ' N  u_=( - I ) ' - ' s ,  u. 

(iv) The imaginary part of k, Im (k), is sufficiently large: Im (hk) >> 1. 
(v) The exciting sources are located in a domain sufficiently far from the plane of the strip, 

so that we can write 

O(y,z)~-O(y,O), z e ( - h , h )  

ifO (y, 0) ~ 0. When ~ (y, 0) - 0 this latter must be replaced by an averaged quantity, independent 
ofz. 

2.2. Reduction to a functional equation 

Considering the hypothesis (i) and (iv) we conclude that the function u can be represented by 
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l" r 

I J ~ A(a,s)ei'(~'s)x+~Y+SZdsda, x > 0 ,  
La Ls 

u(x, y, z) = . (7) 

L~ Ls 

where A (a, s) and B (a, s) are functions which will be determined with the aid of the other re- 
quirements. The integration line L~ is an arbitrary straight line--parallel to the imaginary axis--  
in the strip B defined by 

Re (ik) < Re (s) < Re ( -  ik), 

while L~ is coincident with the imaginary axis, say L o. The function 3'(a, s) is defined on an 
appropriately cut s-plane by 

3,(a ,s)={kZ+s2+a2} ~, I m T > 0 .  

It has branch points at is (a)  with 

s(a) = i{kZ+a2} ~, Im {kZ+~r2} ~ > 0 .  
These points are all located outside the strip B and on the hyperbola 

Im (s) - Re (s) = - kxk2 .  

We assume that the s-plane is cut along parts of this hyperbola (see Fig. 1). 

i k ,  

0 

I m s  

�9 Res 

Figure 1. 

By considering the boundary condition (2) and the continuity of u and grad u on x = 0, [z] > h 
one writes 

l.f [A-B]eSZ+~Ydsda = O, [z[ >h,  
I I[A+B]3,e sz+~'dsda=O, [ z [ > h ,  (8) 

S J"/~s(iT, a, s)eS~+*Ydsda = O(Y, z), [z[ < h ,  

I I [A~s(i?, a, s)-BSr a, s)] e~Z+*Ydsda = 0,  Izl X h.  

Note that the last equation of Eqns. (8) is valid for [z [ > h, as well as for [z ] < h, since the 
physical quantity corresponding to 5~ u is continuous on x--0. 

Now let us define 

? - e-s~ dz  t) (y, z) e -  ~y d y ,  (9) F(a,s) (2ni)2. h ~ -~  

which enables us to write first 

I I e(a, s)e~Z+~'dsda = O(Y, z), 

and then to deduce from Eqns. (8) 
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A - B  = Px(s), 

[A + B] 7 = P2 (s), (10) 
A &~ 7, a, s ) - F ( a ,  s) = eh~(b_ (s)+e-h~(b+ (S), 

A 5~ a, s ) ,  B5r a, s) = 0 ,  

where P~ and P2 are two integral functions of s, (b+ is regular in the right-half plane B+ defined 
by Re (s) > Re (ik), except probably at infinity, while (b_ is regular in B_ defined by Re (s) < Re- 
( -  ik), except probably at infinity. Note that all of these functions depend also implicitly on the 
parameter a and (be (s) have algebraic behaviour for s--+oo (See Appendix 2). 

Eliminate A and B from Eqns. (10) and consider the hypothesis (iii) to find 

[1 + ( -  1) l-v] p1 + [1 - ( -  1) 1 -~] P2 _- 0, 
7 

P~ + 5~ (i7, a, s) - F (~, s) = e h~ (b_ (s) + e -  hs (b + (S). 

NOW it is natural to distinguish the following two cases: 

(11) 

2.2.1. T h e  ease v = l .  
If the operator ~ is even with respect to its first argument then the first equation of Eqns. (11) 

yields/'1 -= 0. Then the second equation of Eqns. (11) becomes 

eh*(b_ (s)+e-h*(b+ (S) &~ (i?, Or, S) P2(s ) = - V ( a ,  s) .  (12) 
27 

Hence the problem is reduced to find the functions (b+ (s) which solve this latter equation. Once 
the functions (b e (s) are found, then A and B are determined by 

a ( a ,  s )=  B(a, s )=  {ehS(b +e-h~(b+ +V}/Ys(i7, a, S). 

2.2.2. T h e  Case v = O. 
In this case, proceeding as before, one gets 

P 2 = 0 ,  

esh (b_ (S)+e-hS(b+ (S)- �89 a, s)P, = -F(a, s), (13) 
A ( 6 ,  s) = - B(a ,  s ) =  {ehSr +e-hs (b  + + F}/~c'r 6, S). 

Note that both the Eqns. (12) and (13) are of the type (3a) with 

K(s )  = - �89  cr, s)[y(a, s)]-~,  (14) 

and, because of Eqns. (6), one always has 

/ ( ( s ) -  K ( - s ) .  (I5) 

Since the symmetry condition (15) is met, Eqn. (12) or Eqn. (13) can be reduced to an equation 
of the form (see, for example, [1], pp. 196-199) 

2 f G(~) (p+ (~) d~=/ ( s )  2=  +1 L ' - ' 
(16) 

where L- is a straight-line in B, parallel to the imaginary axis so that the point ~ = - s lies always 
in the left-hand side o f L .  cp+ (s) a n d f  (s) are given by 
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~ + ( s ) - 2 ~ _ ( - s )  
q3 + (s) = K + (s) ' 

2 IF (~) - 2F ( -  ~)] e -  ~h 
f (s )  = 2 ~  ~ K ( 0 ( ; + s )  d~, (17) 

while K + (s) and G are defined as follows : 

K+ (0 e-Z~h K (s) --- K + (s) K_ (s), K ( - s) - K + (s), G (~) - K_ (~) " 

By definition, K+ (s) (or K (s)) has neither singularities nor zeros in B+ (or B_). 
It is worthwhile to point out that in order to reduce Eqn. (12) or (13) to Eqn. (16) one should 

have 

order 4~ + (s) < order K + (s) for s ~  oo in Re (s) > Re (ik). 

As it will be shown in Appendix 2, this yields the condition (4) of Section2, 2.1. 

2.3. Approximate solution of functional equation. 

Consider now the hypothesis (v). Because of it F(a, s) in Eqn. (9) and, consequently, f (s) in 
Eqns. (17) can be replaced by 

2D(a) sinh sh D(a) = tp(y, O)e ~'dy 
r(a,  s) - (2~zi) 2 s ' o0 

and 
2 ( 1 - 2 )  D a 1--e 2(h d~ (18) 

f (s) -- -(2-~i~ ( ) fL- ~ (~ + S) K (~) ' 

With 2=  + 1, Eqns. (18) and (16) give f ( s ) - O ,  so (p+ ( s ) -  0 and consequently 

, +  (s) - ,  ( -  s). 
With 2 = -  1 (Eqn. (16)) becomes an equation by which one determines the function ~P+ (s) 
(in what follows we replace 2 by - 1). Since the substitution of Eqn. (18) into Eqn. (16) makes 
it approximate, the aforementioned exact solution method [6] is not applicable. We therefore 
attempt to develope a new method to obtain an approximate solution. 

Equation (16) is a functional equation of the form 

5~ = f ( s ) ,  seB+ . 

Now, take into account Eqn. (5) which shows that one has [-see Appendix 2] 

1 
sK_(s) o ( 1 ) f o r s ~ ,  soB  , 

and replace (p+ by 

1 111 
e ( s ) -  2~ 2 /C(s)  K~(0) s 

(19) 

to get 
S~9 = f  (s) +f l  (s), 

with 
D(~) 1 f. K + ( 0  e-2~h,, 

f l  (s) 2rc2K+(0) 2rci , .  K _ ( 0  ~t~+sj d~" 

Where the point ~ = 0 as well as ~ = - s  lies in the left-hand side of L-. This shows that when f l  (s) 
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can be neglected with respect to f (s), the function ~o (s) is an approximate solution to Eqn. (16) 
with 2 = - 1. 

With the aid of Jordan's lemma we can convert f l  (s) into a sum of residues and branch-cut 
integrals in B+. Each of these terms contains a factor e 2xh, with Re (Z) > Im (k), which, on the 
basis of (iv), shows that this sum is negligibly small. Then Eqns. (17) yield approximately 

~b + (s) ~ cb_ ( -  s) = - -  ~ )  ~ 1 K + (s) 7 1 (20) 
4re L K+(0) J s" 

For the far-field approximation we need only the values of cb + at 

a = % - i k s i n 0 s i n ~ 0 ,  s = s  0 - i k c o s 0 ,  

where R, 0 and qo stand for the usual spherical co-ordinates (see Appendix 1). 

3 .  S o m e  i l l u s t r a t i v e  e x a m p l e s  

Suppose that S is a unidirectionally conducting strip and the incident field is produced by a 
Hertzian dipole located at (d, 0, 0). We consider only three different cases illustrated in Fig. 2. 

Z i 
h i h ~ h 

~ . . . .  Dy ' l ,y  

X X X 

Problem 1 Problem 2 Problem 3 
Figure 2 

~J 

- - - .~  y 

5esu - (k  2 

0 (y, z) -= - 

while in the case 

~ s  u ~ (k 2 

z ) -  - 

In Problem 1 the strip is longitudinally conducting while the dipole moment is ilex. In the 
Problem 2 the strip remains unchanged but the dipole moment is now Iley. In the Problem 3 
the strip is transversally conducting while the dipole has a moment IlG. In all of these problems 
the function u stands for the non-zero component of the vector potential due to currents induced 
on the strip. In the case of Problem 1 and Problem 2 one has 

+ u, v = l ,  c~=0, 

k 2 
ilac (0, y, z) ,  

I(D 

of Problem 3 

+ u, v = l ,  c~=~, 

k 2 
inc Z)  . 7 E z  (O,y, 

103 

This shows that the conditions (4) and (5) are fulfilled. When the relations 1/hn (k) ~ h ~ d are 
also satisfied, the above theory can be applied. The following tables summarize the results of 
step-by-step application of the theory. Notice that since in Problems 1 and 2 the factor -�89 
5~s(i7, a, s) is constant with respect to s, it can be introduced into P2(s). The same is true for 
the factor - 1/2 in the case of Problem 3. 
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In what follows ~ denotes the magnetic permeability of the medium and superscript "inc" 
stands for "incident". 

pr. ~, (y, z) 
k 2 

- ~ #lldy exp {ik (d 2 + y2 + z2)~}. {d z + y2 + z 2 } ~- 

k 4 •  #ll exp {ik(d z ( !  +y2+za)�89 - _ _  

k2 ( 
- ~# l lexp{ ik (d2+y2+z2)~}  "{d2+y2+z2} -~ 1 

. y2 

d~y ~) 

d2 +~2 +z  2 ) 

pr. D(a) 

# lldk2 f ~  eik (d2 + y2)V~ 
4n 'o~ {d2+y2} ~ e-"Yydy 

(co e ik(d2+y2)Vz  
I ~Ilkz d2 | ~ e-~ 

4n J - ~  t +Y 

iHlk 2 foo eik (d2 + y2)V~ 
4n ~ (d 2 + y2)~ e -  ~Ydy = - 

# Ilkz Ko(d(_aZ_k2)�89 
2~ 

K o : Mc Donald ' s  function [7].  

pr. ~s(i~, ~, s) ~<+ (~) ~o(s) 

k 2 + o'2~ -- 2 e - i~/4/{s-- s(a)} �89 

k 2 + a  2 ~ - 2 e - - i ~ / 4 / { 8  - -  S(O') } ~- 

e - Dr/4 (k -[- is) 
k2 +s2 -~ - 2 ( k 2 + s  2) {s_s(a)}~, 

D(o-) . 
2~ 2 e ''~/4 {s-s(a)}~ 

D(~) ei~/4{s_s(~) p 
27z 2 

D(~) ei~/4 {s--s(~)}~ 
271" 2 k + is 

pr. A (0", S) 

- D ( a ) { - s ( a ) }  ~ _1 ~" e n~ e T M  ~ 

4nZ(k2+a  2) s [ [ - s - s ( a ) ]  ~" [ s - s ( c r ) ] t  

-D(~)(-s(~)}~ 1~ c "s 
4n2(kZ+a 2) s ( [ - s - s ( g ) ]  ~ 

C - hs 

[s-s(~)]~ 

-D(a)  { - s ( a ) }  ~ 1 ~ ( k - i s ) e  +h~ ( k + i s ) e  -h~ 

4n2k(k2+s 2) " s [ ~  [ s - s ( o ' ) ]  ~-j  

Journal of  Engineerin 9 Math., Vol. 9 (1975) 93-102 



100 

pr. far-field approximation of the scattered field 
(ao =ik sin 0 sin ~o, so=ik cos 0, 7o =7(ao, So)=k sin 0 cos q~) 

M. Idemen  

- -  COCO 0"0 _ z  

E~, = -  k2 _A(ao, So) B~,=-s  oA(ao,so) 

s O~0 Ey = ico + A (ao, So) B; = 0 

ioJ 
E~ = B~ %soA(%, So) = iToA(ao, So) 

- -  0)7o0-0 
e~ k2 A(a o, So) B~ = -soA(ao, So) 

s (70 
E, = ico 1 + k2 A(%,so) B;=O 

ico 
E: = k2 aosoA(ao, So) B: = iToA(ao, So) 

- - s  

E]. = k2 7osoA(ao, So) B~ = aoA(ao, So) 

ico 
E~ = ki aosoA(a o. So) B~= -iToA(ao, So) 

E~ =ico (1 + S~)A(ao, So) B::O 

4. Conclusions 

The present  study shows that  a satisfactorily app rox ima te  theory of the scalar scattering by a 
strip in a dissipative med ium can be established when the relat ions 1/Ira(k) ~ h ~ d are satisfied. 

The expressions valid in the far-field approx ima t ion  are obta ined by simple manipula t ions  
p rov ided  that  the integral associated with D(a)  can be evaluated.  

It is evident that after some simple modif icat ion the above  theory can also be applied in the 
case of plane incident wave when the hypothesis  (iii) is fulfilled. The Babinet 's  complementa r i ty  
principle permits  to apply the above results to the infinite slit problems.  

It is also evident that  the me thod  used here can be applied when cylindrical structures other  
than the strip are concerned.  

Appendix 1. Far-f ield approx imat ion .  

Let us consider  Eqn. (7) for x > 0 and substitute x, y, z by usual spherical co-ordinate  R, 0, ~o. 
Then we write 

U =  ]Lo eRasin~ [fLs A(a's)emiTt~'s)s'"~176 . . . . .  O~dsJda. (A.1) 

By applying the classical saddle-point  me thod  [8; pp. 293-312] we get a far-field approx ima-  
tion to the inner integral 

= sA('  , . . . .  ds 
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as follows 

e - i (k 2 + a 2 )Vz R cos  0 / cos  wo 

B(o-) ~ {2ni(k 2 + o-2)~}~ ( -  R cos 0/cos Wo) ~ A {o-, - i ( k  2 + o-2)~ cos z Wo } sin Wo, 

where (kZ+ o-2)~ denotes the branch which is reduced to k for o-~0 in the complex o--plane cut 
along lines which connect the points + ik to infinity without penetrating into the domain 
Re (+ ik) < Re (o-) < R ( -  ik), while w 0 is defined by 

t g w o =  - t g  0 cos qo, W o e [ n - O , n  ] . (A.2) 

We insert the above expression of B(o-) into Eqn. (A.1) to obtain 

u ~ \ R  cos O] sin Wo soA(a, so)exp _i(k2+o-2) ~ cos 0 
Lo C O S  W o 

+o-sinOsin ol]do-, 
(a.3) 

with 
So _- _ i(k z + o-2)4 cos w o . (A.4) 

We apply now once again the saddle-point method to Eqn. (A.3). The saddle-point o-o is 
given by 

o-o cos 0-So sin 0 sin qo = 0.  (A.5) 

From Eqns. (A.2), (A.4) and (A.5) one gets 

o -o=iks in0s inqo ,  s o = i k c o s 0  

and then 
e i k R  

u~2nikA( iks inOsin~o,  ikcosO) sinOcosq) ~ , (cosqo>0).  (A.6) 

Note that by reducing the integration line L o into the steepest-descent line through the 
saddle-point o-o one assumed that no singular point of the integrand is crossed. This fact must 
be checked in each example. Otherwise the necessary changes must be made in (A.6). 

The expressions for x < 0 can be obtained from the symmetry relations: 

u ( - x ,  y, z) _-- ( - 1 )  1 ~ u ( x , y , z ) .  

Appendix 2. On the conditions (4) and (5). 

According to the special choice of F(o-, s), 4~+ is nothing but the double-Laplace transtorm of 
[5~ u (x, y, z + h) I (z)]x = o, where I (z) stands for the Heaviside unit function" 

e-hSq) + (s) = f~_oo { l h  [2P, U(X, y, z)e-SZ]x=odz} e-~S dy . 

Hence, if one has 

[L-~ ~ c(y)(z-h)  ~ for z-,h,  z - h  > 0  

then one writes 

�9 + (s) ~ C(o-) 1 for s---,~, Re(s )>Re( ik) .  

On the other hand, (ii) gives 

double Tr. of u (0, y, z + h) I (z) ~ A (o-) 1 for s-,oo, Re(s)< Re(ik) 

and then 

(A.7) 

Journal of Engineering Math., Vol. 9 (1975) 93-102 



102 M. l demen 

1 
double Tr. of [s y, z + h)I(z)]x= 0 ~ ~a, (i7, a, s)A (a) s~+l 

This shows that 

C(a) ~ A(G) Y's(iv, G, s) (A.8) 
St~+ 1 s~+]- 

(The same line of arguments can be repeated for ~b_). In order to reduce Eqn. (12) or (13) to 
an equation of the type (16) we must have 

order (b + < order K + = �89 order Y'~ (iv, a, s) 
7 v 

v 
= �89 order 5~' s (i v, a, s) 2" 

By considering also (A.7) and (A.8) this yields the condition (4) of Sect. 2, 2.2.1. 
Now consider the relation (19). It shows that  one has 

K+ (s) = O(s ~-') 

with some ~ > 0. Hence Eqn. (14) gives 

 es(i> o, s) = o (s2 - 2) 
7 ~ 

which is nothing but the relation (5). 
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