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SUMMARY

An approximate theory of the scalar scattering by a strip in a dissipative medium is established. The theory is suitable
when the relations 1/Im (k) < h < d are satisfied by the width of the strip (2h), the smallest distance between the plane of
the strip and the exciting sources (d) and the wave number (k). The expressions valid in the far-field approximation are
obtained by simple manipulations. Some illustrative examples concerning the scattering of electromagnetic waves,
emitted by Hertzian dipoles, by unidirectionally conducting strips are given.

1. Introduction

Consider the following classical boundary-value problem related to the strip S defined by
x=0, ye(— o0, o), ze(—h, h):

Au+kPu=0, (x, v, 2)¢S (1)
0 0 0

A=y 5y = u= 2

g& (axy aya (32)” ',b(y, Z)a (x’ Y, Z)GS, ()

where k? is a complex constant, ¥ (y, z) is a known function defined on S while u is to be found.
The linear differential operator .%; is a polynomial (with constant coefficients) with respect to
the symbols appearing in the argument, such that

<6>2u_62u <i> oy, _ P
ax) T e \ox 6y>u_6x6y ‘

In addition to Eqn. (2), one stipulates also that u satisfies the radiation condition at infinity
and some edge condition at the edges of S.

Although this problem has been subject to a great deal of investigations in case of plane
incident waves [ see, for example, 1-5], a general approximate theory valid for arbitrary incident
waves is still lacking. The aim of this paper is to establish such a theory when the relations
1/Im (k) < h < d are fulfilled, where d stands for the smallest distance between the plane of the
strip and the exciting sources. The method used in this approach is the classical Wiener—
Hopf technique. Although our main purpose is to present the essentials of the theory, deferring
its detailed application to some specific problems to later publications, it seems appropriate to
include some representative examples to illustrate the new possibilities opened by this theory.

As is well known, the two-sided double Laplace transform technique, combined with the
Wiener—Hopf procedure, reduces the abovementioned problem to a functional equation of the
form (see 1, pp. 196-207 or Sect. 2, below)

P (0,5)+e "D (0,5 +K(o,5)P(o,s)= —F(o,s) (3a)
or
0. (0, 9) :5% fﬁG(o—, C)?%;QdCﬂf(a, s), A2=1, (3b)

where @, ¢, and f are functions which are regular with respect to s in some right-half plane,
B, say, of the complex s-plane. Likely, ¢ _ is a regular function of s in some left-half plane B _.
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One supposes essentially that B, and B_ have a non-empty common intersection B. P(c, s) is
an unknown integral function of s while F, f, G and K are given. Finally, the integration line
L” is an arbitrary straight line in B, parallel to the imaginary axis, such that the point (—s) lies
always in the left-hand side of L.

With regard to the solution of the functional equation (3b) some approximate methods are
known [1-5]. Recently, the present author has given an exact method which can be applied
in the general case to find the exact solution, if any [6]. In the general theory that we are going
to establish for a dissipative medium, the equation (3b) being already approximate, the afore-
mentioned general exact method is not applicable. So we give a new method for obtaining an
approximate solution to (3b), especially suitable when the relation 1/Im (k)< h is satisfied.

The essentials of the theory are given in Sect. 2, while Sect. 3 is devoted to some illustrative
examples. Some relations concerning the far-field approximation and the edge condition are
presented in Appendix 1 and Appendix 2.

2. Approximate theory in a dissipative medium
2.1. Hypotheses

In order to get a satisfactorily approximate theory we assume that the following requirements
are fulfilled :

(i) The incident wave is monochromatic (the time factor e *** is suppressed throughout).
Because of the radiation condition satisfied at infinity, the asymptotic expression of u for
¥— oo contains a factor e’

(ii) The edge condition satisfied at the edges of S is of the form

u(0, y, z) ~a(y)(z+ h)® for z—>Fh,

it

where o is a real constant obeying the conditions

Z iy, o,
lim SSZ(:Xyzo_-vS) — 0, y2252+62+k2 , (4)
Py, o,
tim 229 oy 8
Famdive) S

with v= +1 or v=0in the case 2.2.1. or 2.2.2 below, respectively.
(1ii) The operator %, is even with respect to its third argument while it is even or odd with
respect to the first:

0 0 0 d ¢ 0
s sy = o (o o )

g 0 0 - iy (8 o 0
$,<~a,5,5>u:(—1) L 5)2’@’02)”’

(iv) The imaginary part of k, Im (k), is sufficiently large: Im (hk) > 1.
(v) The exciting sources are located in a domain sufficiently far from the plane of the strip,
so that we can write

Yy, 2)~y(y,0), ze(—h, h)

if(y, 0)%£ 0. When  (y, 0) = O this latter must be replaced by an averaged quantity, independent
of z.

(6)

2.2. Reduction to a functional equation

Considering the hypothesis (i) and (iv) we conclude that the function u can be represented by
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P
1] Ao, s)er@9xr ot gode, x>0,
L, Ls

ule,y,2) =) . (7)
J J B(o, s)e”@xtovtsidodes x<0,
L, Lg

where A(o, s) and B(o, s) are functions which will be determined with the aid of the other re-
quirements. The integration line L, is an arbitrary straight line—parallel to the imaginary axis—
in the strip B defined by

Re(ik) < Re(s) < Re(—ik),

while L, is coincident with the imaginary axis, say L,. The function y(o, s) is defined on an
appropriately cut s-plane by

(o, s)= {k*+s*+0%}*}, Imy=0.
It has branch points at +s(o) with

s(o) =i{k*+0?}?, Im {k*+0?}* 20.
These points are all located outside the strip B and on the hyperbola

Im(s)-Re(s)= —k, k, .
We assume that the s-plane is cut along parts of this hyperbola (see Fig. 1).

Ims

: 1
ik | 5
M“ |
i |
i |
Lo |
l m
} -ik
] |
i

Res

Figure 1.

By considering the boundary condition (2) and the continuity of u and gradu on x=0, |z| > h
one writes
{f[A—B]e**?dsde =0, |z|>h,
f§[A+B]ye=*"dsdo =0, |z|>h, (8)
{§ AL iy, 0,5)e” Vdsdo =Y (v, z), |z|<h,
{§[A%,(iy, 0,s)—BZL,(—iy, 0, 5)] e***dsda =0, |z|]Sh.
Note that the last equation of Eqns. (8) is valid for |z| > h, as well as for |z| < h, since the

physical quantity corresponding to %, u is continuous on x=0.
Now let us define

F(o,s) = (2n1—1)2 th e *dz jio (v, z)e"*¥dy, )
which enables us to write first

{§ F(o,s)e**dsda = y(y, z),
and then to deduce from Eqns. (8)
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A—B=P,(s),

[A+B]y=P,(s), (10)
AZiy,0,5)—F(a,s)=e"d_(s)+e ™™D, (s),

AZ(iy, 0,5)—BZL(—1y,0,5)=0,

where P, and P, are two integral functions of s, @, is regular in the right-half plane B, defined
by Re(s) > Re(ik), except probably at infinity, while @ _ is regular in B_ defined by Re (s) < Re-
(—ik), except probably at infinity. Note that all of these functions depend also implicitly on the
parameter ¢ and @ (s) have algebraic behaviour for s—oo (See Appendix 2).

Eliminate 4 and B from Eqns. (10) and consider the hypothesis (iii) to find

[1+(—1)1‘”]P1+[1—(—1)1“”]%= 0,

. (11)

P.
2 {Pl + f} Liiy, 0,8)~F(a,s)=€e"® _(s)+e P, (s).

Now it is natural to distinguish the following two cases:

2.2.1. The case v=1.
If the operator .%, is even with respect to its first argument then the first equation of Eqns. (11)
yields P, =0. Then the second equation of Eqns. (11) becomes

Z(iy, g, s)

P _(s)+e P, (s) — >

P,(s)= —F (o, s). (12)
Hence the problem is reduced to find the functions @, {s) which solve this latter equation. Once
the functions @, (s) are found, then 4 and B are determined by

Ao, s)=B(o,s)={"®_+e P, +F}/ %y, a,5).

2.2.2. The Case v=0.
In this case, proceeding as before, one gets

P,=0,
e"d_(s)+e M, (s)— 3Ly, 0, s)P, = —F(a, s), (13)
A(o,s)= —Ba,s)={e"*®_+e "™, +F}/ Ly, 0,5).

Note that both the Eqns. (12) and (13) are of the type (3a) with

K(s)= —3Z(iy, 0, s)[7(0,5)] 7", (14)
and, because of Equs. (6), one always has
K{s)=K(—s). (15)

Since the symmetry condition (15) is met, Eqn. (12) or Eqn. (13) can be reduced to an equation
of the form (see, for example, [1], pp. 196-199)

4 D+ (C)
——— G dl = R A=+1 ,
0.6 = 5 | 60 G ar=r), 1=t (16
where L is a straight-line in B, parallel to the imaginary axis so that the point { = — s lies always

in the left-hand side of L™. ¢, (s) and f (s) are given by
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&, (s)—AD _(—3)
K. (s) ’
A [FQ)—AF(=0]e™*

IO =5 V7 K 0C+

P4 (s) =

g, (17)

while K, (s) and G are defined as follows:

K. () e~ 20k
K_(0)
By definition, K , (s) (or K _ (s)) has neither singularities nor zeros in B, (or B_).

It is worthwhile to point out that in order to reduce Eqn. (12) or (13) to Eqn. (16) one should
have

K@S)=K,(5)K_(s), K (=s5)=K . (s), G(0) =

order @, (s) < order K, (s) for s—oo in Re(s)>Re(ik).
As it will be shown in Appendix 2, this yields the condition (4) of Section2, 2.1.

2.3. Approximate solution of functional equation.

Consider now the hypothesis (v). Because of it F(o, s) in Eqn. (9) and, consequently, f (s) in
Eqns. (17) can be replaced by

2D(o) sinh sh
Flo.s) = G s

D)= | 0.0

and
1_672{h

_A(1=4) ;
70~ 20 ), cEmi% 0
With 1= +1, Eqns. (18) and (16) give f(s)=0, so ¢, (s)= 0 and consequently
D, (s)=P (—s).

With A= —1 (Eqn. (16)) becomes an equation by which one determines the function @, (s)
(in what follows we replace A by — 1). Since the substitution of Eqn. (18) into Eqn. (16) makes
it approximate, the aforementioned exact solution method [6] is not applicable. We therefore
attempt to develope a new method to obtain an approximate solution.
Equation (16) is a functional equation of the form

Lo, =f(s), seB,.

Now, take into account Eqn. (5) which shows that one has [see Appendix 2]
1
K = o(1)for s>, seB_, (19)

and replace ¢, by

D{o) 1 1 1
o=~ 52 [Ig(s) - K+(O):| s
to get
Lo =[s)+/1(5),

with 14
__ D) L K e
fils) = 272K, (0) 2xi J K_(0) {{L+s)

Where the point { =0 as well as { = —s lies in the left-hand side of L™ . This shows that when f (s)

d | (18)

ac.
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can be neglected with respect to f'(s), the function ¢(s) is an approximate solution to Eqn. (16)
with A=—1.

With the aid of Jordan’s lemma we can convert f; (s) into a sum of residues and branch-cut
integrals in B, . Each of these terms contains a factor e~ **", with Re (y) > Im (k), which, on the
basis of (iv), shows that this sum is negligibly small. Then Eqns. (17) yield approximately

<15+(s)‘:—<15_(—s)=—]ir(;)|il —ﬁi%}é (20)

For the far-field approximation we need only the values of ¢, at

oc=0,=iksinfsing, s=sy,=ikcosf,

where R, § and ¢ stand for the usual spherical co-ordinates (see Appendix 1).
3. Some illustrative examples

Suppose that S is a unidirectionally conducting strip and the incident field is produced by a
Hertzian dipole located at (d, 0, 0). We consider only three different cases illustrated in Fig. 2.

z
A )\
h h h
S r———
L) e ————— ) 4 o p—rY } —_ Y
—7
—x e )
d
x x x
Problem 1 Problem 2 Problem 3
Figure 2

In Problem 1 the strip is longitudinally conducting while the dipole moment is Ile,. In the
Problem 2 the strip remains unchanged but the dipole moment is now Ile,. In the Problem 3
the strip is transversally conducting while the dipole has a moment Ile,. In all of these problems
the function u stands for the non-zero component of the vector potential due to currents induced
on the strip. In the case of Problem 1 and Problem 2 one has

62
Esuz<k2 +5J7> u, v=1, a=0,
Ko
'ﬂ(y, Z) = - Ia E)linc(o’ Y, Z) )

while in the case of Problem 3

i
13
j

Lu= k2+ﬁu %
8 0z?)

k?
'1[/()’, Z)E - E EzlﬂC(O,y, Z)‘

This shows that the conditions (4) and (5) are fulfilled. When the relations 1/Im (k) < h < d are
also satisfied, the above theory can be applied. The following tables summarize the results of
step-by-step application of the theory. Notice that since in Problems 1 and 2 the factor —3-
Z.(iy, 6, 5) is constant with respect to s, it can be introduced into P, (s). The same is true for

the factor — 1/2 in the case of Problem 3.
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In what follows u denotes the magnetic permeability of the medium and superscript “inc’

stands for “incident”.

pr. ¥(v,2)
kz 3
1 - Irzylldy exp {ik(d®+y* +z2\} - {d*>+y*+22} 7
2 - kiyllexp{ik(dz+y2+zz)*}~{d2+y2+zz}'* 1 - L
4n S dr+y?
3 kz ZZ
(A2 u2 g2 2,2, 214
——E[yllexphk(d +y 22} {dP 4y 42 l—m)
pr. D(o)
”dkz © ik (d2+y2)a
1 K J c e ydy
dn o {d+ytE
2 ©  Qik(d 432
2 B ullk ZJ' e e dy
4n —w (AP Y
#Ilkz Jw eik(dz+y2)‘/z #Ilkz
3 — ce "oy = — e m2 2V
47 Cw (dz+y2); € dy n KO(d( 4 k ) }
K, : Mc Donald’s function [7].
pr. - iy 0,9) K, (s) o(s)
. D )
1 k*+g2>-2 e” "/ {s—s(a)}? - %Uz)e""“ {s—s(g)}?
n
. D ;
2 k4622 e ™4/ {s—s(a)}* - ——2(? et {s—5(0)}?
n
e~ ™4 (k+is) D(s) ., {s—s(o)}*
3 k2+2—>—2k2+2 D R4 _ in/4
s K+ 5o 2w C ks
pr. Alo, s)
| =D(o}{-s(0)}} 1 et e™h '
a2 (k®+0?)  sl[-s—s(@)]* [s—s(d)]?
5 =D(o}{-s(0)}* 1 et ek
4n? (k* + 0% s [—s—s(e)]* [s—s(e)]*
3 _

~D(a){—s(o)}* 1{(k—is)e’*"s (k+is)e*’“}

72 k(C+s%) s [-s—()F [s—s(@)
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pr. far-field approximation of the scattered field
(oo =ik sin 8 sin ¢, s, =ik cos 0, yo=7{(0q, Sp) =k sin 6 cos ¢)
— WYy 0,
1 E = kyz" % A(g6, ) B: = —s0 A(ag, 50)
E =1 1 Jgk A B =0
y = 1w +;§ _(‘70750) y =
.o .
E = w2 TS0 A(0, So) B; =1y, A(00, So)
— WYl ’
2 E. = e A0, o) B = —s5A{a0, 50)
B oo (142 )4 B =0
y = 1o (1 + 2 (00, S0) =
.o .
E; = = 050 A(00, So) B =iyo A(0e, So)
—w
3 E; :7%50/‘1(‘70, So) B, = 09 A(00, So)
., o s .
E = 2 0450 A(0o- So) By = —iyyA(0y, So)
B o1 %) 4 B =0
t=io (1435 ) Ao 50 =

4. Conclusions

The present study shows that a satisfactorily approximate theory of the scalar scattering by a
strip in a dissipative medium can be established when the relations 1/Im (k) < h < d are satisfied.

The expressions valid in the far-field approximation are obtained by simple manipulations
provided that the integral associated with D(o) can be evaluated.

It is evident that after some simple modification the above theory can also be applied in the
case of plane incident wave when the hypothesis (iii) is fulfilled. The Babinet’s complementarity
principle permits to apply the above results to the infinite slit problems.

It is also evident that the method used here can be applied when cylindrical structures other
than the strip are concerned.

Appendix 1. Far-field approximation.

Let us consider Eqn. (7) for x >0 and substitute x, y, z by usual spherical co-ordinate R, 0, ¢.
Then we write

Y j eRasinOsinq) [j A(O’, S)eR{iy(a,s)sin(}cosq;Jrscos()}dS:, dO’ . (Al)
LO LS

By applying the classical saddle-point method [8; pp. 293-312] we get a far-field approxima-
tion to the inner integral

B(O') — j A(O’ S)eR{iy(a,s)sinBcosrp+scosB}ds
b
L

s
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as follows:

e” i(k2+a2)% Rcosf/cos wo

B(o) ~ {2mi(k* + 62)*}*

(— R cos /cos wo)* A{o, —i(k*+ %)} cos” wo} sinwo,

where (k* + 6%)* denotes the branch which is reduced to k for ¢—0 in the complex o-plane cut
along lines which connect the points +ik to infinity without penetrating into the domain
Re(+1ik) < Re (o) < R(—ik), while w, is defined by

tgwo=—tgfcos g,  woe[n—0,7]. (A2)

We insert the above expression of B(o) into Eqn. (A.1) to obtain

u~ <R (2:; 0) sin w, J’LoséA(o, So) EXP [R {—i(k2 +a?)* szsfo + osinfsin @ H do,
‘ (A3)

with
So = —i(k*+ %)t cos wy, . A.4)

We apply now once again the saddle-point method to Eqn. (A.3). The saddle-point o, is
given by

Ty €08 B—3,sin 0 sin ¢ =0, (A.5)
From Eqns. (A.2), (A.4) and (A.5) one gets

oo =1k sin 0 sin ¢ , §,=1k cos 0
and then

ikR

u ~ 2mik A(ik sin 0 sin ¢, ik cos 0) sin 6 cos ¢ R (cos ¢ >0). (A.6)

Note that by reducing the integration line L, into the steepest-descent line through the
saddle-point ¢, one assumed that no singular point of the integrand is crossed. This fact must
be checked in each example. Otherwise the necessary changes must be made in (A.6).

The expressions for x < 0 can be obtained from the symmetry relations:

u(=x,y,2)=(=1)" "ulx y,2).
Appendix 2. On the conditions (4) and (5).

According to the special choice of F(o, s), @, is nothing but the double-Laplace transform of
[Zulx, y, z+h)1(2)], -0, Wwhere I(z) stands for the Heaviside unit function:

e P, (s) = S {S: [Zulx, v, z)e‘sz]xzodz} e dy.

o8}

— o0

Hence, if one has
[Lu]eo~c(V)(z—h) for z—h, z—h >0

then one writes

@, (s)~ C(o) s”—1+T for s>o0, Re(s)>Re(ik). (A7)

On the other hand, (ii) gives
, 1
double Tr. of u(0, y, z+h)I(z)~ A(0) —=5 for s—oc0, Re(s) < Re(ik)
S
and then
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double Tr. of [Lu(x, y, z+h) 1(2)] =0 ~ Z(iy, 6, 5) A(0) ?1:;
This shows that
S~ A L2 | a8)

(The same line of arguments can be repeated for @ ). In order to reduce Eqn. (12) or (13) to
an equation of the type (16) we must have

%, (iy, o, 5)

v

order @, < order K, =1 order

= 1 order %,(iy, 0, 5) — % .

By considering also (A.7) and (A.8) this yields the condition (4) of Sect. 2, 2.2.1.
Now consider the relation (19). It shows that one has
K. ()= 0(s)
with some ¢ > 0. Hence Eqn. (14) gives
Z,(iy, o, )
7
which is nothing but the relation (5).

= O(s*?)
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